首页> 外文OA文献 >Comparisons between motor area EEG and all-channels EEG for two algorithms in motor imagery task classification
【2h】

Comparisons between motor area EEG and all-channels EEG for two algorithms in motor imagery task classification

机译:运动图像任务分类中两种算法的运动区域脑电图和全通道脑电图的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article reports on a comparative study to identify electroencephalography (EEG) signals during motor imagery (MI) for motor area EEG and all-channels EEG in the brain–computer interface (BCI) application. In this paper, we present two algorithms: CC-LS-SVM and CC-LR for MI tasks classfication. The CC-LS-SVM algorithm combines thecross-correlation (CC) technique and the least square support vector machine (LS-SVM). The CC-LR algorithm assembles the CC technique and binary logistic regression (LR) model. These two algorithms are implemented on the motor area EEG and the all-channels EEG to investigate how well they perform and also to test which area EEG is better for the MI classification. These two algorithms are also compared with some existing methods which reveal their competitive performance during classification. Results on both datasets, IVa and IVb from BCI Competition III, show that the CC-LS-SVM algorithm performs better than the CC-LR algorithm on both the motor area EEG and the all-channels EEG. The results also demonstrate that the CC-LS-SVM algorithm performs much better for the all-channels EEG than for the motor area EEG. Furthermore, the LS-SVM-based approach can correctly identify the discriminative MI tasks, demonstrating the algorithm's superiority in classfication performance over some existing methods.
机译:本文报告了一项比较研究,以识别运动区域EEG和脑计算机接口(BCI)应用中的所有通道EEG的运动图像(MI)期间的脑电图(EEG)信号。在本文中,我们提出了两种用于MI任务分类的算法:CC-LS-SVM和CC-LR。 CC-LS-SVM算法结合了互相关(CC)技术和最小二乘支持向量机(LS-SVM)。 CC-LR算法整合了CC技术和二进制逻辑回归(LR)模型。这两种算法在电机区域EEG和全通道EEG上实现,以研究它们的性能如何,并测试哪个区域EEG更适合MI分类。还将这两种算法与一些现有方法进行了比较,这些方法揭示了它们在分类过程中的竞争性能。来自BCI竞赛III的两个数据集IVa和IVb的结果表明,在运动区域脑电图和全通道脑电图上,CC-LS-SVM算法的性能优于CC-LR算法。结果还表明,CC-LS-SVM算法对全通道EEG的效果要好于对电动机区域EEG的效果。此外,基于LS-SVM的方法可以正确识别具有区别性的MI任务,证明了该算法在分类性能方面优于某些现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号